Abundant Wave Accurate Analytical Solutions of the Fractional Nonlinear Hirota–Satsuma–Shallow Water Wave Equation
نویسندگان
چکیده
This research paper targets the fractional Hirota’s analytical solutions–Satsuma (HS) equations. The conformable derivative is employed to convert system into a with an integer–order. extended simplest equation (ESE) and modified Kudryashov (MKud) methods are used construct novel solutions of considered model. solutions’ accuracy investigated by handling computational Adomian decomposition method. explained in some different sketches demonstrate more properties
منابع مشابه
Exact Solutions of the Nonlinear Generalized Shallow Water Wave Equation
Submitted: Nov 12, 2013; Accepted: Dec 18, 2013; Published: Dec 22, 2013 Abstract: In this article, we have employed an enhanced (G′/G)-expansion method to find the exact solutions first and then the solitary wave solutions of the nonlinear generalized shallow water wave equation. Here we have derived solitons, singular solitons and periodic wave solutions through the enhanced (G′/G)-expansion ...
متن کاملAnalytical solutions for the fractional Fisher's equation
In this paper, we consider the inhomogeneous time-fractional nonlinear Fisher equation with three known boundary conditions. We first apply a modified Homotopy perturbation method for translating the proposed problem to a set of linear problems. Then we use the separation variables method to solve obtained problems. In examples, we illustrate that by right choice of source term in the modified...
متن کاملStability analysis of solitary wave solutions for the fourth-order nonlinear Boussinesq water wave equation
In the present study, the nonlinear Boussinesq type equation describe the bi-directional propagation of small amplitude long capillary–gravity waves on the surface of shallow water. By using the extended auxiliary equation method, we obtained some new soliton like solutions for the two-dimensional fourth-order nonlinear Boussinesq equation with constant coefficient. These solutions include symm...
متن کاملAnalytical solutions to the fractional wave equation with variable dielectric function
Abstract The fractional wave equation is presented as a generalization of the wave equation when arbitrary fractional order derivatives are involved. We have considered variable dielectric environments for the wave propagation phenomena. The Jumarie’s modified Riemann-Liouville derivative has been introduced and the solutions of the fractional Riccati differential equation have been applied to ...
متن کاملAnalytical solutions for the fractional Klein-Gordon equation
In this paper, we solve a inhomogeneous fractional Klein-Gordon equation by the method of separating variables. We apply the method for three boundary conditions, contain Dirichlet, Neumann, and Robin boundary conditions, and solve some examples to illustrate the effectiveness of the method.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fluids
سال: 2021
ISSN: ['2311-5521']
DOI: https://doi.org/10.3390/fluids6070235